Methemoglobin is incapable of carrying oxygen, which results in functional anemia and tissue hypoxia. It is produced by many chemicals and drugs with oxidizing properties. It may occur in a variety of settings including occupational exposures, smoke inhalation, and therapeutic drug use. Infants are particularly susceptible.

Methemoglobin

Methemoglobin is formed when hemoglobin iron is oxidized from its normal ferrous (2+) to the ferric (3+) state. Once it has been oxidized, the iron molecule cannot bind to oxygen. Nonoxidized heme moieties in a methemoglobin molecule bind more tightly to oxygen, shifting the oxyhemoglobin dissociation curve to the left, thus making less oxygen available at the tissue level. Because red blood cells are continuously exposed to oxygen free radicals, methemoglobin is formed continuously. Endogenous reduction mechanisms keep the proportion of methemoglobin down to 1% or less in most individuals. The most important of these mechanisms is the cytochrome-\(b_5\) methemoglobin reductase system. This is a NADH dependent mechanism and is responsible for the removal of nearly 99% of the methemoglobin that is produced under normal circumstances. If there is no unusual ongoing production, this mechanism can reduce methemoglobin to hemoglobin at a rate of nearly 15% an hour. Other reduction mechanisms include NADPH–methemoglobin reductase system, as well as sulfation enzymes, glutathione and ascorbic acid. NADPH–methemoglobin reductase plays a pivotal role in the treatment of methemoglobinemia. This enzyme will reduce dyes, such as methylene blue, which may then reduce methemoglobin to hemoglobin.

Causes of Methemoglobinemia

Exposure to an Oxidizing Agent

The most common cause of methemoglobinemia is exposure to oxidant drugs or metabolites. The list of causative agents is long (Table 1). Some of the more commonly encountered agents include benzocaine (found in many teething gels), dapsone (used for prophylaxis against \(Pneumocystis carinii\) pneumonia), lidocaine, metoclopramide, naphthalene, nitrites and nitrates, phenazopyridine, and phenytoin. While many of the drugs listed in Table 1 may act as oxidants themselves, a number of them, such as benzocaine, dapsone and aniline, are metabolized by the cytochrome P-450 system into free radicals capable of forming methemoglobin. The “Blue Baby Syndrome” may occur in infants who have been exposed to nitrates in well water. Typically, this rare phenomenon occurs in young infants living in rural areas where the nitrates from fertilizers placed on crop fields have seeped into the well water of homes nearby.

Acidosis and Food Sources in Infants

Several physiologic factors place young infants at increased risk of developing methemoglobinemia. Infants have reduced levels of cytochrome-\(b_5\) reductase and higher percentages of fetal hemoglobin, which is more easily oxidized. Also, a higher intestinal pH facilitates the growth of certain gram-negative bacteria that may convert nitrates into more reactive nitrates. These factors, in conjunction with changes associated with metabolic acidosis, particularly those caused by diarrhea, appear to act synergistically to cause methemoglobinemia in infants. Numerous studies have demonstrated methemoglobinemia associated with foods high in nitrates. Silver beets and carrots have been implicated, as have spinach and other greens. Reports indicate that nitrates and nitrates used as preservatives may also cause methemoglobinemia.

Clinical Presentation

The clinical presentation of methemoglobinemia is dependent upon the level of methemoglobin present (Table 2). Cyanosis can become evident when 10-15% of hemoglobin has been oxidized to methemoglobin. Patients with underlying cardiac disease, respiratory dysfunction, anemia or acidosis may show symptoms at lower methemoglobin concentrations.

Diagnostic Tests

Pulse Oximetry

Pulse oximetry can be misleading. Pulse oximetry uses the ratio of light absorbance at two wavelengths to estimate the relative proportion of oxyhemoglobin. Methemoglobin absorbs both wavelengths equally, which makes pulse oximetry readings unreliable. As methemoglobin concentrations begin to rise, pulse oximetry values fall. However, they generally stay in the 80s, and at methemoglobin concentrations of 100%, pulse oximetry measurements will read approximately 85%. In cases of methemoglobinemia, pulse oximetry may provide misleading information about oxygen availability at the tissue level.

Blood Gas Analysis and Co-Oximetry

Most arterial blood gas analyzers provide calculated oxygen saturation. Because this calculation is dependent upon the partial pressure of oxygen (PO2) and the pH, this value may
be falsely normal in cases of methemoglobinemia. Co-oximetry measures light absorbance at 4 wavelengths and is capable of giving an accurate measurement of methemoglobin concentrations. Although newer co-oximeters can differentiate between sulhemoglobin and methemoglobin, older models cannot.

Filter Paper Test
Blood that contains high concentrations of methemoglobin appears chocolate brown. Several drops of blood placed on filter paper can help make the diagnosis. Deoxyhemoglobin will appear dark red or violet initially and will subsequently brighten with exposure to oxygen, but the chocolate-brown appearance of methemoglobin will not change with exposure to oxygen. This test is subjective and if performed, should be compared to a control blood sample.

Complete Blood Count
Whenever methemoglobinemia is suspected, a complete blood count should be obtained to check for hemolytic anemia.

Differential Diagnosis
The diagnosis of methemoglobinemia should be considered in all cyanotic patients who do not respond to oxygen therapy. In infants, the differential diagnosis of methemoglobinemia includes cyanotic congenital heart disease, which also may not respond to oxygen therapy. Infants with cyanotic heart disease who receive supplemental oxygen will demonstrate low calculated oxygen saturation and a low partial pressure of oxygen. Infants with methemoglobinemia will demonstrate normal calculated oxygen saturation and a high partial pressure of oxygen. Genetic causes of methemoglobinemia may be revealed in the family history.

Treatment
Many patients will require only supplemental oxygen, decontamination, or in the case of infants, hydration and reversal of acidosis with supplemental bicarbonate. Patients who have methemoglobinemia as a result of an acute exposure to an oxidizing agent should be treated for methemoglobin levels of ≥20% if symptomatic, and ≥30% regardless of symptoms. Treatment at levels less than 20% is recommended for patients who are very symptomatic or who have co-existent disease that may render the patient especially sensitive to decreased oxygen delivery (i.e., heart disease, lung disease, or anemia).

Methylene Blue
Intravenous methylene blue (1-2 mg/kg of a 1% solution given intravenously over 3-5 minutes) is the treatment of choice. Another 1 mg/kg should be given if the methemoglobin has not resolved after 30-60 minutes. In the presence of NADPH, methylene blue is reduced by NADPH-methemoglobin reductase to leukomethylene blue, which in turn reduces methemoglobin to hemoglobin. Methylene blue must be used with caution, especially in infants. It is contraindicated in patients with G6PD deficiency. Patients with G6PD deficiency may develop a hemolytic anemia from the oxidant stress of methylene blue and in some instances methylene blue may actually exacerbate methemoglobinemia. Non-G6PD-deficient infants also are at increased risk of complications of methylene blue therapy and may experience hemolysis and methemoglobinemia after higher doses of methylene blue. For this reason, aggressive hydration and correction of acidosis with bicarbonate is all that is recommended for infants with mild symptoms and levels less than 20%. Failure of methylene blue therapy suggests an inadequate dose of methylene blue, inadequate decontamination, NADPH dependent methemoglobin reductase deficiency, hemoglobin M, sulhemoglobinemia, or G6-PD deficiency.

Relapsing Methemoglobinemia
Agents such as dapsone, analine, and benzocaine may produce a relapsing methemoglobinemia. This phenomenon is characterized by rebounding methemoglobin concentrations after initial good response to methylene blue. It is the metabolites of these agents that are the offending oxidants. When the oxidant metabolite forms methemoglobin, the parent compound is regenerated and can then be re-metabolized to the oxidant metabolite. The enterohepatic recirculation of agents such as dapsone can also contribute to this phenomenon. To counter this possibility, decontamination with activated charcoal is indicated and in some instances, continuous infusions of methylene blue have been helpful.

Alternative Treatments
Exchange transfusion may be indicated in patients with severe methemoglobinemia who don’t respond to methylene blue or in which it is contraindicated. Hyperbaric oxygen therapy may also be useful but there is no data to support its efficacy.

Summary
Methemoglobinemia may be seen as a result of acidosis in young infants, but most commonly occurs after exposure to oxidizing agents. Cyanosis is usually the initial presenting symptom, and the diagnosis should be considered in any patient with cyanosis unresponsive to supplemental oxygen. For those who require treatment, methylene blue remains the treatment of choice, but must be used cautiously, especially in infants and in G6-PD-deficient individuals.

Bibliography
Table 1. Agents that may cause methemoglobinemia

<table>
<thead>
<tr>
<th>Agent</th>
<th>Methemoglobin (g/dL)</th>
<th>Percent Total Hemoglobin</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetanilid</td>
<td><1.5</td>
<td><10</td>
<td>None</td>
</tr>
<tr>
<td>Alloxan</td>
<td>1.5 - 3.0</td>
<td>10 - 20</td>
<td>Cyanosis</td>
</tr>
<tr>
<td>Ammonium nitrate</td>
<td>3.0 - 4.5</td>
<td>20 - 30</td>
<td>Anxiety, lightheadedness, headache, tachycardia</td>
</tr>
<tr>
<td>Antipyrine</td>
<td>4.5 - 7.5</td>
<td>30 - 50</td>
<td>Fatigue, confusion, dizziness, tachypnea, tachycardia</td>
</tr>
<tr>
<td>Arsin</td>
<td>7.5 - 10.5</td>
<td>50 - 70</td>
<td>Coma, seizures, arrhythmias, acidosis</td>
</tr>
<tr>
<td>Benzene derivatives</td>
<td>>10.5</td>
<td>>70</td>
<td>Death</td>
</tr>
</tbody>
</table>

Table 2. Symptoms associated with methemoglobin concentrations

<table>
<thead>
<tr>
<th>Methemoglobin (g/dL)</th>
<th>Percent Total Hemoglobin</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td><1.5</td>
<td><10</td>
<td>None</td>
</tr>
<tr>
<td>1.5 - 3.0</td>
<td>10 - 20</td>
<td>Cyanosis</td>
</tr>
<tr>
<td>3.0 - 4.5</td>
<td>20 - 30</td>
<td>Anxiety, lightheadedness, headache, tachycardia</td>
</tr>
<tr>
<td>4.5 - 7.5</td>
<td>30 - 50</td>
<td>Fatigue, confusion, dizziness, tachypnea, tachycardia</td>
</tr>
<tr>
<td>7.5 - 10.5</td>
<td>50 - 70</td>
<td>Coma, seizures, arrhythmias, acidosis</td>
</tr>
<tr>
<td>>10.5</td>
<td>>70</td>
<td>Death</td>
</tr>
</tbody>
</table>

Follow-up calls are performed to reassess patient status. As with any consult service, the UPCC needs patient specific information in order to assess whether the recommendations it has provided are still appropriate. Changes in patient clinical status or discovering new history that may have been obtained by the primary providers may require changes in our initial recommendations. We continue to follow the patient until the poisoning is resolved and the patient is medically cleared. Follow-up is typically with the nurse taking care of the patient, but occasionally with the resident or attending physician.

Because the UPCC is a telephone-based service, contact for follow-up is over the telephone. The UPCC staff can provide hospital staff with sufficient details to verify who is calling and their involvement with the case. The UPCC staff has information about the patient that may include reason for the exposure, substance involved, treatment provided, patient status, past medical history, circumstances surrounding the exposure, name, age, gender and weight. Not all of the above information is available in each circumstance. In rare instances, the patient name is unavailable when the patient first arrives in the hospital. This is usually when the hospital initiates contact with the UPCC rather than when the patient initiates contact with the UPCC.

Consultation of the UPCC initiated by the patient or health care provider constitutes implied consent regarding the UPCC’s need to gather information necessary to adequately assess and make recommendations regarding the case as a health care provider.

Is the UPCC a Covered Entity?
The UPCC is a program of the University of Utah Health Sciences. The University of Utah HSC is a hybrid entity. The UPCC is not considered a covered entity because it does not transmit health information in electronic form in connection with a transaction for which a HIPAA standard has been adopted. However, because we provide patient care as a consultant you can provide follow-up patient specific information to us. Just because we are not a covered entity does not preclude us from working together to provide the best patient care possible.
WHAT DOES YOUR CHILD SEE?

The UPCC introduced a new brochure and poster targeting parents of children under age six during Poison Prevention Week, March 16-22, 2003. The “What Does Your Child See?” campaign focuses on the difficulty of distinguishing safe products from harmful products, and encourages parents to keep poisons out of reach. Please contact Renate Hulen at 801-581-7504 to order brochures or posters.

In summary, whether or not the UPCC is a covered entity does not preclude hospitals from providing patient information to the UPCC as a provider of health care. We appreciate the opportunity to work with you to provide the best care possible to our patients. If you have any questions, please feel free to contact us at (801) 581-7504 or poison@hsc.utah.edu.